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Abstract

e PN
e

.7 The marginal success of the several hjgh~roaan;ﬂon
frequency-wavenumber (f-k) techniques to data is cited from
the literature. Their ability to resolve signais from two
closely spaced sources is not markedly superior to that of
ordinary beamforming. Moreover, such nonlinear techniques
vield distorted magnitudes and azimuths. The ordinary ¥—k -
‘spectrum‘ is shown to be no more than a l-signal estimator,
and the high resolution techniques to he bﬁt variations of

that l-signal estimator., In this paper the notion of the

wavenumber “spectrum“ is set aside. By analogy to the i-

signal estimator {the onrdinary ¥~k'spsctrum) a linear N(z
xsignal estimator is deve%pped. The high resolving power of
this technique and the fidelity of its estimales is demon-

strated theoretically and by conputer examples both recal and

synthetic.
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The frequency-wavenumber spactrum, which is o malti-
dimensional equivalent of the ovdinary freguency spoectrum,
is used in the Sciences for theoretical and coxnerimental
analysis of traveling waves. It was introduced formally
into seismology by Burg (5) in an app!ication Lo data
analysis, The ordinary unsmoolhed three dimensional
frequency-wavenumber spectrum of time series data sampled

at discrete points in space is ygiven by

N
P, k) | L7 | k)
- ) o —— PR N N .‘, - - -
P((au,k) N A~ An(bu)C )4‘_3 l\'\(u,))‘ C_)(P(L <1y
[ANeE .
(L)
where
B n isothe dnden ol the spacial
B ' sample points,
- -
A ’ i - Y i ‘. ~/ : \ I
Anlwe) @ X P LG ()]
is the {finite Yourier trans-
form of the ntih time series,
l( 15 Lhe vecior wavenunber,
= Y ieothe veclor location of the ntk
L sensor, or sample point,
?4 N Each Fourier trensform term is cquivalent (o o sinusoad,
A5 I For example, the sinusoid for the A Th transtorm at frequency
| h
- - (2 has amplitude A,\(u)) and phase oy (D)
;- (at the center of the time window),
3 Now -k_'rn is the phasec delay, belween the origin
‘. <




and ", of a plane wave orriving from the azimath of
the vector IQ and traveling at the phosoe voelocity

: v = /Kl

So, multiplication of the lransform i

i

the kernel G?ng(J‘E‘{a)
has the effect of advancing the sinacscid by just the Gwmount
the wave itself had delayed it. Thus the sunwmation in (1),
above, 1is a beam sum, and the twﬁg specctrum is just the
frequency domain equivalent of ordinary beaw steering,

When the traveling-wave delays are exactly cowmpensated

for by the beam shifting, i.c., when the true Lg of the

signal is selected, the sinusoids add up constructively with

, . (). L s
i no interference, and the power, ﬁ/ is maximized., Within
: = certain limits, then, maxima or peaxs in -L~k space are

Loty
A
r;‘

treated as indications of the proosence of trvaveling plane
waves, and the location and size of the maxima are taken

as estimates of the speed, bhearing. Tvecquency  and power

gt

RN

of those signals, If more than one signal is prescont or
if there is noise in the data, though exact determinations
are no lonyger possible, the ﬁ«k apoctrum is still usetul

for detecting and estimating signals, ayain wilhin limits,

Sy

One of those limitations is iwmposed by the finile width
of the maxima associated with signals, ( 9 ) The case is
analogous to that of the ordinary lrequency spectrum in

which components are representoed by peaks ot finite width,




Plane wave signal peaks in the 'L*k specuerum have a half-

power width of the order

|
Al”x»‘%‘,_‘;;

where A X is the width, or aperature, of the array of
spatial sample points., (4) If two signals in the same

time vindow and frequency band are also close enough in
phase velocity and azimuth so their wavenumbers, say i;

and ’<1 , are such:

then their maxima in the ¥“‘\ spectrum are merged and

form a single peak. (23) Thus, because the sensor arrays

are spatially finite their resolving power is finite., Attempts
to increase that power of resolution throuyh data processing
technigue have required mathematical schemes to reduce the

width of the lobe of the signal peak (1-3 6-1%, 17, 19),

However, the straight-forward geometric awppeal of this
approach has proved misleading thus far, In such hybrid
spectra signal lobe-widths indeed have been narrowed

substantially. Nevertheless, when signal pairs approach

each other in the k-plane, resolution still fails as the

separation nears 45‘{, to wit, the lobe halt-width for

the ordinary 'L~\< spectrum, (2, 11, 13, 15, 20).
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Observations of other investigators on the shortcomings of
various high-resolution frequency-wi vonunber techniqgues are
cited below,

Lintz (1968) finds xhat tho Fian -y 3olation +-k spectral
technigue of Haney (1l967) does not wianiticantly improve the
capability of a seismlic array to detect wiltiple time~overlap-
pint events from different azimuths,

Salat and Sax (1969) expcerimentally {'nmd the high-resol-
ution -F*k spectrum of laney (1907), and that of Capon (1968),
(1969) no better ot resolving two simaltancously arriving
waves than the ordinary f-k spectrum, McCowan and Lintz
(1968) call attention to an unrecoverable distortion of the
true amplitude spectrum in Haney's technique, and the marked
disadvantage of spurious peaks under certain concitions which
they regard as the inevitable result of using a high-gain
procedure,

Seligson (1970) describes conditions under which Capon's
high-resolution technique displays less "angular resolution"
than ordinary beamforming. McDonough (1972) concludes that
variations in amplitude from sensor to sensor may be expected
to produce anomolous behavior in Capon's processor. Of course,
just such variation in amplitude from sensor to sensor will

result precisely because of the prescnce of two or more signals,
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McDonough offers arguments to show that ordinary beamforming
is less susceptible to instability resulting from small signal
modeling errors than all other array processors,

Haney, loo, notes that in the processor he describes
(1967) variation in amplitude from sensor-to-sensor could
distort the specﬁrum beyond recognition. ie remedies this
difficulty by forcing the same amplitude upon each input
channel, thus destroying the very amplitude information that
would be indicative of the presence of two or more signals.

Woods (1973) concludes that given favorable conditions,
the resolving power of the maximum-likelihood 'ﬁ*k spectrum
can be effectively infinite, but, disappointingly, offers com-
puter examples on synthetic data in whiclh the input signal
pairs are well spaced to begin with (they are separated by a
distance of 0.9 of the main-lobe half{-width)., Cox (1973} also
offers theory suggesting that given arbitrarily high signal-
to-noise ratios arbitrarily fine resolution should be possible,
but he does not offer a method.

1t wmay be argued that the limited rasolving power of the
several high-resolution techniques results from the wavenumber
spectrum being in reality a l-signal estimator. Indeed, the
ordinary £k "spectrum” is a least sguarcs estimator for

fitting given data to a single plane wave, as shown further

Ads e _oatles
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on, 1In routine automated processing of thoe LASA LP data
Mack and Smart (1973) found the ordinary spectyrum uscful

for estimating only one signal at a time. Estimates of a

possible second signal were made by recomputing the wave-
number spectrum after the first (and laryer) cstimate had
been subtracted from the data. They call this process stirip-
ping; it is useful, of course, only for estimating signals
separated by about the reciprocal of the array diameter or
more., At that, such estimates of a pair of signals ayre not
optimum, but first order approximations.

Properly, the -F“k spectrum is defined only for signals
of infinite spacial extent traversing infinitely large arrays.

——————

The effect of a signal of wavenumber ko is then confined
to the pointymE, in the spectrum., Approximations to this
definition are useful if the dimensions of signals and arrays
are sufficiently large. Failing that, the "spectrum" reduces
to a l-signal estimator as noted. While the high-resolution
techniques do attempt to extend the effective array diameter,
they all test the wavenumber space with a l-signal probe, as
in the ordinary ¥-k5pectrum.

It is proposed here to set aside the notion of a spec-

trum, Rather we will extend the l-signal estimator to an

M\ -signal estimator ttus to permit the simultanecus removal
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of the effects of one signal from the estimate of another
and so achieve true high-resolution. t the same time, use of
beamforming (in the k -plane) bto estimate each of the M
signals will preserve the stability and estimate fidelity of
the ordinary -F-k spectrum,

In the following discussion a l-signal least squares
estimator is developed and is identified with the ordinary
1(-l< ‘spectrum. Analogy to the l-signal estimator is used to

develop an M—signal estimator.
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Conventional Frequency-Wavenumber Analysis

In the conventional freguency-wavenumber spectrum

(ordinary or high-resolution) a single plane wave is

hypothesized at each fregquency. That model is then tested

over the wavenumber space of interest. One attempts to

mininmize the error

N

e o
& = Z Ui -Ae™

Nt

by varying A and kwhere

v 2

are the complex Fourier series terms
(for the given frequency)

is the sensor, or channel, index
is the total number of sensors

are the location vectors of the
sensors

is the complex PPourier series term
for the hypothesized plane wave
(at the given freguency)

is the wavenumber of the hypothetical
plane wave (at that given frequency)




A&‘,"/(.ﬁ\/, N = /) . e e /\/is the

7/

model, i.e., the hypothesized plane wave.

Note that also one can write &€ as

~N .7‘*‘____ 2
¢ = Z,|Uneh R

= /.

A
\ -t o r,
since ‘ < n

—

For a given k,e is minimized by setting A to

| L WA
A = K/’Z Upne-t5% "

PY1,

which is shown by the following:

.‘A—“
Let Q,\ + I' Ca = UI\ @" /<‘I‘;\
and a+1c = A
Then ~N 2
& = 2 y (a»\"’a) “1- Z(CA—C)
Nn= )
A

‘ (ar\"&)a'f‘(cv\"c)z

n=/t

Take partial derivatives:

Al N
g.g_ =—-2L(a,\-a) ' —=?-§=—zZ“, (C.\‘C)
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Setting

— A — 2
",4'7;\.- — __,__/__ 7\ . e-/"/é"f:
=/ U’\e N J= U] J

This expression can be separated into 2 parts, thus:

AN

<=7 (a,-a) +(c.-¢)

n=x/

A
= Z = L 28.Q £8° £ QS -2CC+CF

n=o

AL :
= 2 (a4 QY —z2a-aN £ PN =20 CN+CN
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The second term is the ordinary frequency-wavenumber
spectrum
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since it is a sum of squared modulii,
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So to minimize &€ one must maximize /D(A)
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becomes exactly zero when

i

i
11}

that is, when the data describe a single plane wave exactly,

The smaller éE(Ué)wﬁA is, in a given situation, the

N b it

nove likely is the hypothetigal plane wave
Attt
S

‘because the smaller df(4é) is, the larger the F-statistic

———
BTy

b

ERH

e

is for the hypothesis. The F-statistic is given by

F=(N-D- Pff/a’i)

This single plane wave model is often applied in

b e

attempts to analyze a 2-signal case(or a possible 2-signal

sy

case). In such an analysis each signal is treated as if it.
existed by itself, the presence of the other beipg-ignored
with consequent distortion of estimates by mutual_;nterfer;
ence. This interference can be seirious, and if the two
signals are not separated in LQ -space by at'least the half-
width of the main lobe of the array response, they are likely

to appear as but one signal, their main lobes having coalesced,

Attempts to improve the performance of the single wave hypo-

thesis (in application to the two signal case) have been

made in which the main lobe o0f the array response has been

slenderized mathematically by alternative methods of esti-




mation of the wavenumber spectrum. The objecct

has been to

gg reduce the main-lobe half-width and so resoive signal pairs
which otherwise have coalesced main-lobes indistinguishable
from a signal cace. These results have been marginal. 1In
the varicuvs high-resolution technigues the influence of the
one signal on the analysis of the other has beén ignored.
Analysis of possible 2-signal cases calls for a
2—sign§lAmodel, in particular when the Z-signals are Kknown

(or suspected) to be so close together as to have their main

L

lobes merged.

As the l-signal model serves for both the 0- and the

el Lo

f l-signal case, so one might expect a 2-signal model to be

2. . effective in all three cases: 0, 1, or 2-signals.
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% ' Multiple Signal Frequency-Wavenumber Analysis

o By analogy to the l-signal mod:l, one would

expect to solve a 2-signal model by minimizing the error
N ar— — :-’J

':-: —_— 4'/<'7‘:~ ) . P

S =2 U~ Ae’ " g erhn

; 7§ ,‘R,
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varying /A. k, ES, and _*& , where

AR

ES " is the complex Fourier series
term for the second hypothesized
plane wave (at the same given
frequency)

-

R mu-g‘:ﬁ’, e

4& is the wavenumber of the hypothe-
tical plane wave (at that same
given frequency)
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There are now two signals to solve for:
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Ta = Ua — A G?il‘.ja - B G?i*k~72
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=5
Y
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12 then A X N
Lz - 26
o € = ZE: \—T; =~ 2{: .T:\ —Tj\ :
‘1 n=/ nsz!t E
il Again, let ]
i . . ;
H = . .’ ‘
f A= a+tc, AT =a-sc };
. Taking first partial derivatives while noting that '

A 2A* = / and 24 . _ 2A* _ i y
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as in the l-signal case,

D& - e
Sa *15e = —2f Tieth R oL g
n=
Therefore, N -~ —_
A= T (U B kTR, i kR
A f A < ol i
n=
Analogously ——
/ R N o
B8 =%42Z(u.- H)- ek
N A=/ U'\ A
In this form /q and B are optimized, that is, they produce ;

D rend

the minimum value of € for any arbitrary pair of L\ and

blb,

e——
/rg. Adopting the notatinn:

P= _f"\TZ U,\e"‘ lc-r,\
A=)
N rm—an
i —
= Uitk R
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A=P-BE and B= Q-~ALEX

Rearranging to solve A and B simultaneously
P:: A + E)E.
Q=AE'+ B
= I P
E” Q . *
k) ES = =
E ;,
|

TP e,
P
]

—_
="

—

.

bk ”ﬂwqff- 'LJWWW “.t:f_:.![!"’-‘ ‘-:w:}t‘f'): R Sy e Bl i R i RN TR
’ ;.3‘
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(P-QE)/(|- E*E)
B=(Q-PE*/(I-E"F)

At

A T

Written out at length,

|
Lol bt il b et tietn ) g bicllige

and B is similar in form.
Introducing a factor of A\j into &

=7£TZ:T>I

A=)
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l .‘(A.} -ILJ“Z‘ Uo\ e-‘-K?" -+ A -‘iTZ,, U:" ,_.__;} k"’«)
i. . ’ n= Az '

k= TR

' (B Z\;U,\e' "~ 4 B'XJ‘:!.ZJ' U:\I:@l‘k-u,\)

HA%A + Bve)

-~
M“mmﬁmuwuwummtmmmhm“mwm'«»mm;—mmmmmah

N

+HA*BH L bRy Apa 2 7

-

N
€= Z UXUs - (A*P+ AP - (B0 + BQY)

ot e+ i, ) o k4 2

D PN ANy P L
e o s R AL bbb

+(A*A 4+ B*R) +(A*BE + AB*EX)

RECETRIN A 1 TSN

Rearranging the terms in &,

N
< =g Z UlU, - (A*P+APY) - (B*Q+ BQY)
+ A*(A+BE) 4 B'(AE*+B)

B R e VU S

i and recalling that

P- A+BE = Q= AE*+8

P N
= WL UlU, —(AP*+BQRY)
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% Further “hHstituting
A=P-DBE = P=(-AE"

L =L Ul

%"‘ =

a

- | LT ll% T T T

- — 1R L - "\—— -

% —nl_ | ) Ui - Gk ZUe‘ 1
:1; nel j-. J=!

Since & is

2 terms in &

The identity of these last 2 equations may be demonstrated

by noting that the numerator (above) equals

N — -
| RIS R -
NP - e TN
N Lgle T
N . T
- ﬁ_z(c::_‘ l\ ra p\(-__ l‘l"\ [y L\{ ><‘~:.‘:I ,\ I\ i~> F \"\CQ)
A=l
=L 7 {p*p 4("« )'\ . RSN
-2 Z{Prsara-pPar. -PQe

P*P + Q*Q -PQ*E™ -

be non-negative everywhere,.

, a@bove, must always be

-] L e -RF
e

el ‘\ B
[

P*QE

a sum of squares, by definition it must

Therefore the second of the
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This is the 2-signal test,

analogous to the ordinary frequency-

wavenumber spectrum which is the l-signal test. However, it
is more convenient to retain the form
»* *
AP™ + BQ
This 2-signal ‘F-k "spectrum" then is computed from 3

beams (as the ordinary ‘F"‘( spectrum is computed from 1 beam).

The beams are

| ZN |
P T e—— U &_1\«&. the mean of the data transforms
N r=! " that have been beamed to k
(one of the two wavenumber
variables),
N .—b_‘_ )
Q =‘_|_ ~- LI RE A the mean of the datec transforms
N o Uae after beaming to 4&  (the
nelt other wavenumber variable),
E = l i({(,_k).'ﬁ which is the (complex) array
N Z \ < response
Az

This 2-signal test is solved as is the ordinary -F-k

spectrum, numerically, by searching the wavenumber space of

R o R T S YT L




interest. Now, however, there are 4 dimensions to search,
over which to test the errox criterion.

It is instructive to submit a knowia pair of pﬁre,
noiseless signals *5 the 2-signal test to illustrate the

function of the elements of the expression:

—t

Let - FlR pgeibn

Beamlng them exaztly to l\ and {; (since these are known
in this special case),

—

p‘"‘L(FC_‘k ™ +C| 1 ,_ r,\>.e_ik7r';:

ey
= _{\'_J_E F + G e‘».(fﬁ:k\)-ﬁ
- F+ Gzt P - Fage
and |
5 o kR e
Q=R Z(FHR + G™n). et
FE*+G
Then

A= (P +QE)/(I-E%E)
= (F+GE -(FE*+G)E)/(\ ~EXE)
= (F+GE -FE*E-GE)/(I-E*E)
F(l—E*E)/(I-—E*E)

B=(FE*+G —(F+Ge)E?)/(1 ~E*E)

et e a0 i agihih
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B = G‘(I—E*‘E)/(\-—E*E) = G

Thus
N T = B
( . . -~ C e 2
& = _KI_Z U,\-—Ae:-'l" PR
net
N e -.-. - -
1 e Ao ANy At
=__N__Z\Fet " 4 G‘el L S Fctﬁ(fn__c_(etfgm
nai

e =0

This little exercise clarifies a bit the function of the array

response, E:, in the signal models A and E3

The development of the 2-signal test, of course,
suggests the derivation of a 3-signal test, by analogy:

First, the form of the test would be, analogously,
N —_ _— -
l kT a2 iR |2
< =L U, -AkR _RIkT o iR

ne|

Introducing the notation

A
!
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-
>
ml
-
|
m
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Zl—
N 47_
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~(ATP+ APX) - (B*Q +BQY)-(C*R + c RY)

+(A%A + B*B 4 C*C)

+(A"BE,+AB*EY) + (B*CE,+ B C*EY) + (ACE+ACE)




Now noting that in the 2-signal test

i

.r F>’= A 4+ BE ang
Q= AE*+ B
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one recognizes that, in the 3-signal test,

e

P= A 4+BE, +CE,
Q = AE*+ B + CE,
R = AE*+ BEX + C

i
L
=
7
3
-
R

W
et bt

and, defiring
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(JGEF\EE fif ' Eis
ESEX

1 AT T S

Lt AR e
L

P f'E E. Jo n-!
= [Q E.l raen
A REN

, etc., or

A = [ P(i-E'E) + Q(ELE,-E) + R(E,EfE,))/clen
B = [ P(EME,-EN + QUI-ENE) *+ R(E'EE))/don
C = [ P(E*EMEN * QUEESED + RU-EFE)]den
den= | - EXE, - EXE, -E2E, +E,EJ'E, + EFE,ES
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Now rearranging €&

Z:u.\u (A%p+BrQ+C'R) - (AP +BQ™ 4 CRY)

n=i

A*(A+ BE, + CE)+E(AEM B +CE) +C(AE 4 BES+C)

and substituting FD ,CQ, and FQ

| N | |
= =752 U¥U. -(AP*+ BQ* + CR")

"=l
~To minimize é; , then, one will maximize

AP* 4+ BQ*+ CR®

the 3-signal test, or 3-signal analog to the conventional,
l-signal frequency-wavenumber spactrum. The function is
composed of 6 beams: F> ,<:l, and FQ., the 3 beams of the

data, LJA, and Ez,, EE,, and Eia, the 3 beams of the array

response.
Remembering the l-signal test (conventional {‘l<
spectrum), |
N T2
| _ | LKy
NE =l |U.mAe
nei
| < v Tk 1
- w2 (us- At TR (U, - ATk

we may rewrite it as

N
R E = WL UlU,-AP-APY - AA




Asl )
4 ! 2 . |
NS = N USUL - ATA - APYHATA
- . . )
= -N—Z UrU,\ -AP

is the expression one must maximize in order to minimize
the error. So the ‘F'k spectrum (fcr the l-signal, conven-

tional, case) is

L3
APT
and . AP"’: -+ E)Q% is the 2-signal test,
and oo AP# -+ BQ* 4+ C R* is the- 3-signal test.

In the l-signal test
A =2
|

For the 2-signal test

P E

A“Q—él",“’ R =

|
EX

For the 3-signal test

A: ;I R e:‘.C

B Ry i e - LI . . . e R

ey




This formalism makes evident the relationship between ths
successive tests. Thus one may extropolate and directly
write the expression for the M-signal test in simple,wterse |
form. Fbr example, the 4-signal test is |
AP"+ BQ'+ CR*+DS” -

in which 5, the sum of the data beamed to yet a 4th point,
—

)ﬁ , is introduced into the sequence . P, Q, and R :

and in which

i uL‘uL.“ i

»

uiuly

A

NTO U
MM —m

—
.
3 I 6
_ K%
A =
= Y etc.,
| B E,E,.
El I ES ES
»* »”
ELESLE
. g »
—j ‘ E4 ES Eg |
i f and t_ is the array response at (t" ) . E , that at
. 4 " 5
3 (k-k). ete.
:‘tg : Note.that the four-signal test is computed from 10
§, beams; 4 beams of the input, Uv\, and 6 of the array response,
i In general, the M—signal test requires M beams of input

data (UA) and M(M-‘)/Z beams on the array response, for a

e 3 R M A
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total of M(M 'i'l)/?. beams to compute the least-squares error

at any point in the 2M-dimensional space. But the beams on

the array response are computed from the same complex trig-
onometric terms that are required for the M beams of the input
data. So the M-—signal test requires evaluation of ZMN siner
and cosine terms to compute the error at any point ( hJ is the
number of sensors in the array). Thus the number of trigo—

nometric terms requiring computation increases linearly with

‘It must be noted that a multiple signal test is not
everywhere well-behaved, but has a singularity. For example,

in the case of the 2-signal test, if

=k
Q—-P
E—1

é. is undefined. The value it will take on at /L = l(

so that

and

depends on the direction from which E—bL( Though this

BRI ol oot 52 St bt bt et s e haE e s b A e it

can, of course, be shown analytically, it is a bit tedious for

repetition here. The contoured map of an example (figure
displays this characteristic graphically. The contoured

function is the 2-signal test

AP+ BQ*
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at any point in the 2M-dimensional space. But the beams on

the array response»are computed from the same complex trig-

onometric terms that are required for the M beams of the input

rdata.; So,'the. M-—signal_test regquires evaluation of Z.MN sine
" and cosine terms to compute the error at any pointv( hJ ié the  T

number bf sensors in the array). Thus the number of trigo-
“7nometricﬂtermsf:gquiring computat;pn increases linearly with_
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It mustrbe noted that a multiple signal test is not
everywhere well-behaved, but has a singularity. For example,

in the case of the 2-signal test, if
k—k
Q—-P
E—1
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CEE is undefined. The value it will take on at 4; = LK

.

so that

depends on the direction from which E—-"L(. Though this

can, of course, be shown analytically, it is a bit tedious for

repetition here. The contoured map of an example (figure )

displays this characteristic graphically. The contoured

function is the 2-signal test
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with l( hald fixed as & varies over tho plane. Note

——— e
that the contour lines &ll run together at ’K.“ k.

- .
e

’t& may range arbitrarily close to t( but must not

take on that value exactly. The data in this figure consist

—

of 2 closely spacad signals. The fixed vector, k. ; was

o ) V;u“set at the peak of their merged main lobes.
- One might dismiss this singularity from practical con-
. 3 : sideration since signals of identical speed and dbearing are

'indistinguishable'by array methods. The test for 2 signals at

: : the same wavenumber location is thus unnecessary anyway. But

if the 2-signal test, say, is applied to data composed of only
1l signal, must not both the probe vectors approcach “he same
point, i.e., the wavenumber location of tha input signal, in

order to merge and reduce the function to the l-signal test?

i - We have seen that when the data, LJA , consist of the same

s number of signals as that for which one is testing, the

test performs as expected: the error is minimized at the ?

wavenunber location of those input signals, and the signals . :

are recovered undistorted. Suppose, though, that the 2-signal

test, say, is applied to data consisting of just plane wave,

Let
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in the error expression

{ 2
€ = q Z: ’—EI
We have to maximize

AP+ BQ™ .

et

P R

ek

sl
If k goes to ﬂ , then

-~ P-F,Q-FE”

i A =(P-QE)(1-E*E)
| A =(F-FE*E)(I-E*E) = F

B =(Q-PE*)U-E"E) = (FE*-FE)(I-E"D)
‘ O

and

N 78 T\ -— N .mf =
P= F T\ij"ze‘(ﬂ-k)on\,ar\é Q = FFILZ_‘ e‘(&—ﬁ)«‘
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goes to ‘& th2 error is minimized, the

signal, F'_ . 1s recovered undistorted, and the hypothesized

- second signal vanishes. This solution is invariant though
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*’( be permitted to range over the entire k-plane,

p—ltn

excepting the point L& . Thus the 2-signal test does

,
not reduce to the ordinary f‘k spectrum in the presence

of a single plane wave, and { is not required to go to
—r

k nor would the gradient of & with respect to *(

—

lead to k (if one were using a steepsst descent technique

to minimize & ).
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Numerical Solution of the Multiple Signal Test

One might propose to carry out the numarical solution
of a multiple signal test by a straightforward search of

the entire wavenumber space of interest, as is done in the

= computation of the conventional ‘F" "s spectrum. But the

- multiple signal test may be used in more practical fashion,

1
} with greater efficiency, as a follow-up to the ordinary
3
1
#"l& spectrum, Since a high-resolution array process
by design is intended to separate signals otherwise unre-

solvable, there is sound justification to limit its use to

el y
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%
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8
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the vicinity of signals tentatively identified beforehand

"

by less powerful but faster techniques. This is an advan-

tageous circumstance, since an M-signal test is a fuaction

of 2M dimensions of wavenumber and would otherwise prove

s ok sl Sl o A
gttt 4

computationally less efficient. Applying the 2 -signal
1 test to the highest peak of an ordinary 'F'1< spectrum,
then, one hypothesizes the presence of 2 plan2 waves which

appear as 1 only because of their proximity. By the hypothe- i3

TR .
PSP A R

sis the spectral peak lies within the area of the main lobe

of either signal and thus & may be minimized directly by




the method of steepest descent, This is the procedure used
here.

Since, as has been shown earlier,
— e

4 =k

is prohibited, the descent cannot begin from any one single
point in the k.—plane, as, for example, the pszak under con-
sideration. But any pair of points in that vicinity is
suitable; all lead to the same solution. A convenient pair
are (1) the peak, énd (2) the adjacent minimum of & with
— —
respect to, say, *L when L. is fixed at the peak as in the
previously discussed figure . The gradient of &€ is com-
puted at this pair and & itself then recomputed at a naw
location down thé gradient, The length of this first step
in the descent is some fraction of the width of the array-
response main-lobe, thus chosen to ensure that the process
does not jump from the vicinity of the solution into the
range of an adjacent relative minimum. The graaient is new-
ly computed at this second location; another somewhat smaller
step is taken down the gradient; the gradient is once more
computed, now at this third location, and so forth in suc-

cessively smaller steps until the point is reached in that

4-dimensional space at which the gradient goes to zero,.
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Some examples with synthetic data of the LASA LP array
follow.

The north-south half-width of the array-response main-
lobe is about 0.0056 cycle/km. (figure ) In the first
example the input,tjn, consists of a signal at 0.0002
cycle/km north, and one at 0.0002 south. Thus the half-~
width of the main lobe is more than an order of magnitude
greater than the distance between the signals in the I&—
plane. The signals are agual, of unit size, their phase is
equal (at the center of the array), and no noise is present,
The ordinary ‘#"( spectrum, showing the meryed signals
with resultant solitary main lobe, and looking precisely
like the array résponse, is given . in figure . With one
vector fixed at the peak of this main-lobe while the other
ranges the l& -plane, '3 appears in the contoured plot
of figure . From this pair of points, i.e., the peak in
figure and the one in figure , the descent 1is begun.
Its progress and the final result are shown in the computer
bulletin of figure . This best fit precisely recovars

the 2 signals: size, phase, and the wavenumber location to

within less than 0.000005 cycles/km. The wavenumber distance

between these 2 signals is only a degree or two of azimuth

for Rayleigh waves.

In the second example, presented in similar format
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(figures and ), the synthetic input consists of a
pair of signals in incoherent noise,

One signal, of unit size and zero phase, is located at
0.002 cycle/km south. Random numbers added to it reduce
the signal-to-noise ratio to l. Finally, a very large signal,
100 times the size of the first, is located at 0.002 cycle/km
north, It is opposite in phase to the first one and thus it
interferes destructively with the small signal.

The location of the 2 signals, superposed on the array
response, is shown in figure . The distance between them
is 0.7 the main-lobe half-width., The arrow indicates the

displacement of the smaller signhal as recovered by the 2-signal

test., The small signal alone, in the presence of this same

noise sample, emerges with the same displacement (in the ordin-
ary 'F~|( spectrum). The steps in the descent to the solu-
tion, aré presented in figure . The distortion of amplitude
and phase of the large signal as recovered is about 1 percent;~
that of the small signal, less than 5 percent. The incoher-
ent noise, of course, is the source of such distortion as is
present. The modeling process, being linear, separates plane

waves with fidelity, as demonstrated in the first example.
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